

Materials have to be able to withstand various constraints. A constraint is what describes the effect of external forces on a material.

Type of constraint	Description of forces	Symbol (choose from above)	Examples
Compression	Crushing		Crushing a can Garbage truck compression
Tension	Stretching Deflection		Stretching muscle; Stretching wire
Torsion	Twisting		Earthquake Squeezing water out of rag
Deflection	Bending	ŢĴŢ	Skis; rubber
Shearing	Cutting		Cutting paper; cutting thin sheet of metal

2. <u>Mechanical properties</u> describe how an object reacts to constraints.

Mechanical	Definiton	
Property		
hardness	Resists dents	
elasticity	Reverts back to original after compression, deflection, tension or torsion	
ductility	Can be stretched without breaking; ie. into wires	
malleability	Can be flattened without breaking	
stiffness	Resists deflection especially; not elastic	

Other Material Property	
Resistance to Corrosion	Will not react with water, oxygen, acids, salts or bases
Electrical Conductivity	G= 1/R; allows electricity to flow through it
Thermal Conductivity	Thermal conductivity is the measure of the quantity of (heat) energy
	which flows through a unit length, in unit time, when there is a unit
	temperature difference between the two ends of the length.

In Class Examples

1. What kind of wood is hard? Soft?

Maple, oak: hard

Pine: soft

- 2. a) What elements of the periodic table are ductile and malleable? metals
 - b) What family of elements are ductile, malleable but nowhere near as hard as the rest of the metals?

Alkali metals

b) List six elemental metals with at least some resistance to corrosion.

Au, Cu, Ag, Pt

Ti, Al, Ni = resistant due to protective oxide coating

d) Which elements corrode very easily and why?

Fe, alkali and alkaline earth metals

e) List four elements with an atomic number less than 10 that have poor thermal conductivity.

He, H, C, N, O, F

3. a) Which elements have low electrical conductivity?

Non metals and noble gases

b) STE only---What is the difference between specific heat and thermal conductivity?

Specific heat : J/(g°C)

Thermal conductivity: J/(m*s*K)

- 3. **Ceramic Materials**: do not include just tiles on floors and walls but also bricks, blocks, glass and dishes. They are prepared by the action of <u>heat</u> and subsequent cooling.
- A) What do they have in common form the point of view of chemistry?

	Brick composition	Tile composition	Glass composition
1.	Silica (SiO ₂) - 50% to 60% by weight	Al ₂ O _{3.} BeO, CeO ₂ , ZrO ₂ and sometimes with non oxides	SiO ₂ ,Na ₂ CO ₃ , CaO, MgO and Al ₂ O ₃
2.	Alumina (Al_2O_3) - 20% to 30% by weight	but carbides	
3.	Lime (CaO)- 2 to 5% by weight		
4.	Iron oxide(Fe_2O_3) - 5 to 6% (not greater than 7%) by weight		
5.	Magnesia(MgO) - less than 1% by weight		

<u>Example</u>: STE --- Give the charges of Fe, Al, Mg, Zr and carbonate in the above compounds.

Al: +3; Zr: +4 Mg = +2

Fe:+3 Here's how:
$$Fe_2O_3$$
 2 Fe + (-2)(3) = 0
2 Fe = 6
Fe = 6/2 = 3.

Ceramic Material Property	

Poor conductors; good

insulators

B) Resistance to Corrosion

Can resist attack form oxygen and water but not form chloride, acid and base

Electrical Conductivity

Usually poor conductors; but newer materials can conduct

Thermal Conductivity